A theoretical interpretation of the transient sialic acid toxicity of a nanR mutant of Escherichia coli.

نویسندگان

  • Dominique Chu
  • Jo Roobol
  • Ian C Blomfield
چکیده

This article reports on experimental evidence that an Escherichia coli nanR mutant shows inhibited growth in N-acetylneuraminic acid. This effect is prevented when inocula are grown in an excess of glucose, but not in an excess of glycerol. The nanATEK operon is controlled by catabolite repression, suggesting that diminished expression of the nanATEK operon in the presence of glucose explains the inocula effects. Neither double nanR-nagC nor nanR dam mutants show growth inhibition in the presence of N-acetylneuraminic acid. A theoretical model of N-acetylneuraminic acid metabolism (i.e., in particular of the nanATEK and nagBACD operons) is presented; the model suggests an interpretation of this effect as being due to transient high accumulations of GlcNAc-6P in the cell. This accumulation would lead to suppression of central metabolic functions of the cell, thus causing inhibited growth. Based on the theoretical model and experimental data, it is hypothesised that the nanATEK operon is induced in a two-step mechanism. The first step is likely to be repressor displacement by N-acetylneuraminic acid. The second stage is hypothesised to involve Dam methylation to achieve full induction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of the Escherichia coli sialoregulon by transcriptional repressor NanR.

NanR, one of >8,500 GntR superfamily helix-turn-helix transcriptional regulators, controls expression of the genes required for catabolism of sialic acids in Escherichia coli. It is predicted to do the same in related bacteria harboring orthologs of nanR. The sialic acids are a family of over 40 naturally occurring nine-carbon keto-sugar acids found mainly in the animal lineage, which includes ...

متن کامل

Regulation of sialic acid catabolism by the DNA binding protein NanR in Escherichia coli.

All Escherichia coli strains so far examined possess a chromosomally encoded nanATEK-yhcH operon for the catabolism of sialic acids. These unique nine-carbon sugars are synthesized primarily by higher eukaryotes and can be used as carbon, nitrogen, and energy sources by a variety of microbial pathogens or commensals. The gene nanR, located immediately upstream of the operon, encodes a protein o...

متن کامل

A novel sialic acid utilization and uptake system in the periodontal pathogen Tannerella forsythia.

Tannerella forsythia is a key contributor to periodontitis, but little is known of its virulence mechanisms. In this study we have investigated the role of sialic acid in biofilm growth of this periodontal pathogen. Our data show that biofilm growth of T. forsythia is stimulated by sialic acid, glycolyl sialic acid, and sialyllactose, all three of which are common sugar moieties on a range of i...

متن کامل

Construction of an iss deleted mutant strain from a native avian pathogenic Escherichia coli O78: K80 and in vitro serum resistance evaluation of mutant

BACKGROUND: Colibacillosis, caused by different serotypes of avian pathogenic Escherichia coli (APEC), is one of the important diseases in poultry industry. The isolate O78 is the most prevalent serotype of APEC in Iran. One of the APEC virulence factors, increased serum survival (iss) gene, is related to serum resistance. The usual form of colibacillosis in avian is extraintestinal, and serum ...

متن کامل

Sialic acid catabolism in Staphylococcus aureus.

Staphylococcus aureus is a ubiquitous bacterial pathogen that is the causative agent of numerous acute and chronic infections. S. aureus colonizes the anterior nares of a significant portion of the healthy adult population, but the mechanisms of colonization remain incompletely defined. Sialic acid (N-acetylneuraminic acid [Neu5Ac]) is a bioavailable carbon and nitrogen source that is abundant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 375 3  شماره 

صفحات  -

تاریخ انتشار 2008